
Bad component 
automatization

Tamás Álmos VÁMI1

1 Wigner RCP, Budapest

Pixel Offline meeting



Goals

Include the SiPixelQuality (bad component list) generation/upload in PCL

Reduce the bad component granularity to ROC level

Reduce the time granularity to lumisection level 

Automatize the bad component detection

For the Phase I detector this project is crucial (stuck-TBM, DCDC conv)



Bad component detection

Urs developed a code for Phase 0, I upgraded to Phase 1

The code computes an average ROC occupancy in detector

The following categories are defined:
• Dead: ROC occupancy < 10−3 ROC detector average
• Hot: ROC occupancy > 10σ from ROC detector average
• Inefficient: ROC occupancy < 10σ from ROC detector average



PCL integration 
Suchandra (who developed bad component automatization for Strips) told 
me that we need to have a workflow which we have to pass to the central 
PCL people and they will take care of the PCL integration

Occupancy 
calculation

Bad ROC 
determination

SiPixelQuality
payload

Upload to 
Prep

What we have now:

We can run on Condor/LXBATCH

TODO: Merge the separate processes + optimize for time



Validation
We have a way to test the results using DQM

In DQM from the bins there is a bad ROC list calculated:
e.g.: http://vocms061.cern.ch/event_display/Data2017/Beam/304/304906/HIZeroBias/DeadROC_offline.txt

Viktor made some modifications to the SiPixelQuality builder:
https://github.com/cms-analysis/DPGAnalysis-SiPixelTools/pull/14 

Using which we can create a Quality from the list above.

To make the simulation with the new Quality faster I created a simulation 
up to RAW: /eos/user/t/tvami/BadComponentAtPCL/PerfectPhaseI_GenNu_13TeV_RAW.root

The SiPixelQuality payload is applied in the RAW2DIGI step: 
process.siPixelDigis.UseQualityInfo = cms.bool(True)

http://vocms061.cern.ch/event_display/Data2017/Beam/304/304906/HIZeroBias/DeadROC_offline.txt
https://github.com/cms-analysis/DPGAnalysis-SiPixelTools/pull/14


A comparison
Only including the whole 
modules here

Everything is ready to 
make the same thing on 
ROC level

Run=305366

Run=305366

Own code -->

DQM list -->



Lumisection granularity

Below 8-10 LS there is not enough statistics

AlCaDB is OK with the 10-lumisection based SiPixelQuality

There was no development in the code until so far

From Francesco I learnt that DQM already tested how low we can go

I run on a specific number of files equivalent to 10 LS



Conclusion

Include the SiPixelQuality in PCL

Reduce to ROC granularity

Reduce LS granularity

Automatize the bad component detection

Tongguang Cheng volunteered to finish this project, so he is taking over it

This works well

The workflow is ready 
but needs to be merged

This works well 
(optimization needed?)

10 LS is the goal. 
AlCaDB is OK with it. No 
code development yet 


