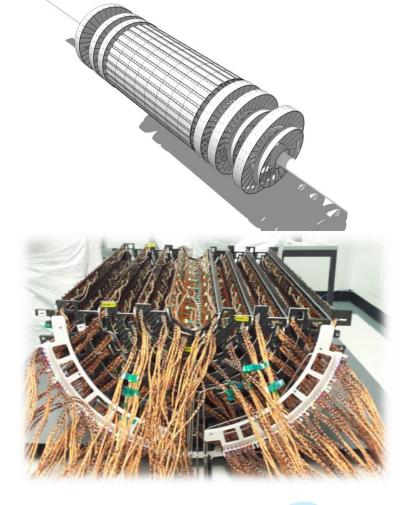
AlCaDB Workshop on Run 2017 preparation — Pixel talk

Tamás Álmos VÁMI¹ for the Pixel group

¹ Wigner RCP, Budapest


Preparation of 2017 data taking

The New Phase I Pixel Detector

4 layers and 3-3 disks allow us better tracking, vertex reconstruction and b-tag efficiency

Digital readout with increased buffer sizes thus we can expect nearly 100% efficiency

Similar sensor with slightly better resolution in BPix (smaller pixel threshold) and much better in FPix

Pixel plan for 2017 running

BPIX/FPIX installation by the beginning of March

Commissioning and online calibration by the beginning of April

In the beginning of the data taking in June detector alignment and standard set of calibrations and checks

Part of the calibration can be done (less accurately) with cosmics (in April)

In the beginning of data taking in around June, we plan to

Fine tune the **timing** of the detector using the first collisions --> 1 day is needed

High Voltage Bias scan to validate the voltage settings

Measure the Lorentz Angle and update the Templates, GenErrors

This could trigger an update in the payloads

Measure and validate that the resolution is as good as expected

Monitoring during the year

In the beginning of each data-taking period, we measure LA, hit efficiency, resolution, and check if performance is as expected —> update certain payloads if needed (expected about 5 times in a year)

Check the performance of the **simulation** against data and tune it if needed

Inefficiencies will be added when needed (although detector is designed to easily handle 2e34 instantaneous luminosities)

Later during the year

Occasional HV Scans

- Depending on the integrated lumi voltage might be raised
- (similar to the beginning of Run II)

Raising the voltage may only happen in 2018 if the integrated luminosity is not too great

Pixel Calibration Workflows twiki

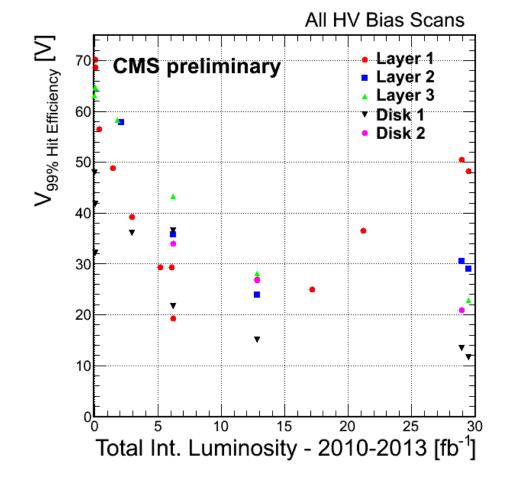
https://twiki.cern.ch/twiki/bin/viewauth/CMS/PixelCalibrationWorkflows

Pixel DB Tags twiki

https://twiki.cern.ch/twiki/bin/view/CMS/PixelDBTags

Main Pixel tools software repository:

https://github.com/cms-analysis/DPGAnalysis-SiPixelTools


First in-situ measurement & 2017 operations

HV scan

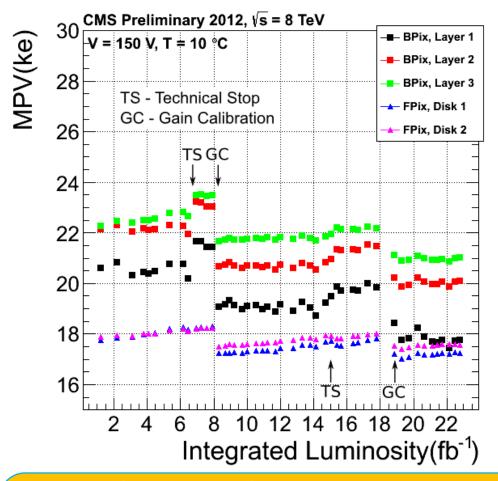
The efficiency for the hits on track measured for different bias voltages → if silicon is fully depleted, hit efficiency reaches plateau

If short with time, HV scan might be skipped as sensors are new and known

Change in the HV settings leads to new LA/GenErr/Template payloads, too

During the data taking

- Perform occasional HV scans
- Raise voltage if/when needed



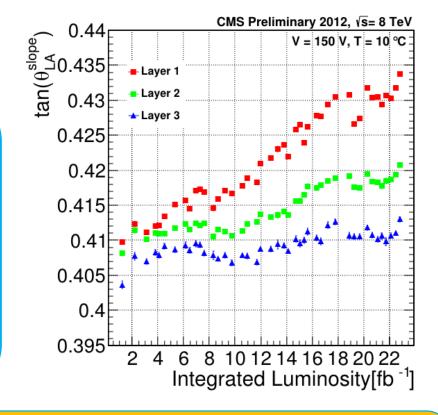
Gain calibration

ADC to Vcal conversion

The gain and pedestals are extracted from a fit in the low VCal region for each pixel separately

This calibration doesn't require collisions and is done online while running in local Then it is analysed **offline**

During the data taking


- Every few weeks, but
- DB update at the technical stops
- Or if offline monitoring justifies it

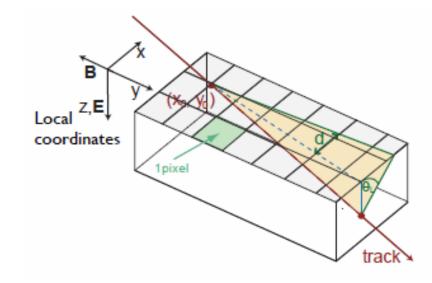
Lorentz Angle Calibrations

Measurements procedure:

- Barrel we use muons from collisions data (/MuOnia/ dataset) for the minimum clusters size method
- Forward In Run I we mainly used Cosmic muons for the grazing angle method
- In both cases, we analyze the data offline

LA also strongly depend on accumulated radiation dose thus we need to measure and upload calibration constants regularly

During the data taking5-10 times per year



Templates

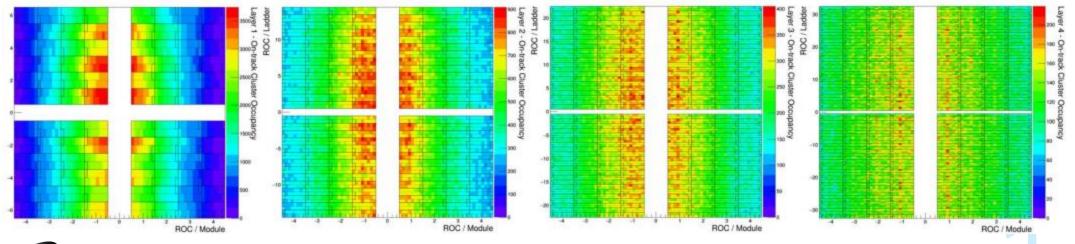
Template hit reconstruction:

- Yields a better estimate of the cluster parameters than that used in generic hit reconstruction
- Is needed by the alignment that measures the final values of the **Lorentz Angles** that are uploaded into the DB

- We analyze the same dataset **offline** that we use for the Lorentz Angle measurements (also using MuOnia)
- The templates are created with a simulation that uses our Lorentz Angle measurements and is needed for the final ReReco

During the data taking

- DB update at the technical stops


SiPixelQuality – List of Bad Components

List of dead modules/readout chips of the detector Problems we encountered in Run I:

- Broken parts (wire-bonds, VAna sense wire)
- Problem with the fiber extension cable
- Temporary issues with old readout chips

During the data taking

 DB update anytime needed

DB side of the payloads

Record names (Data)

SiPixelGainCalibrationOfflineRcd SiPixelGainCalibrationForHLTRcd

SiPixelLorentzAngleRcd SiPixelTemplateDBObjectRcd SiPixelGenErrorDBObjectRcd

SiPixelQualityRcd SiPixelFedCablingMapRcd Record names (Simulation)

SiPixelGainCalibrationOfflineSimRcd SiPixelGainCalibrationForHLTSimRcd

SiPixelLorentzAngleSimRcd SiPixelTemplateDBObjectRcd SiPixelGenErrorDBObjectRcd

SiPixelQualityRcd SiPixelFedCablingMapRcd

Scenarios for MC Simulations and datasets used

Scenarios for MC Simulations

Dynamic Efficiency loss can be simulated (but first we need to collect data)

Different parts of the detector fail -> Failure Scenarios study

The validation plots of study can be found in a presentation from me at the Pixel Offline meeting:

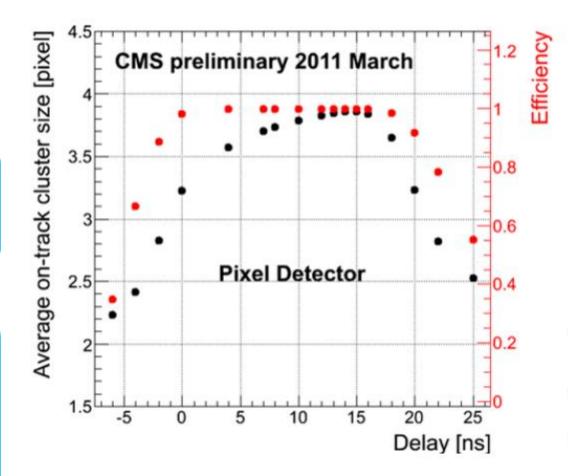
https://indico.cern.ch/event/607513/#29-pixel-failure-scenarios

Datasets

No ALCARECO datasets are used by us

MuOnia dataset for LA and Template/GenErr studies

ZeroBias RAW dataset for Timing/HV/SiPixelQuality



Backup

Timing scan

Optimal setting of pixel detector clock vs LHC clock must be determined using first collisions:

- Coarse time alignment (WBC finding)
 with DQM dedicated online client is
 being prepared
- Fine tuning with DQM and offline analysis (efficiency and cluster size/charge)

During the data taking: not planned

